Yamuk konu anlatımı ekol hoca
Alt ve üst kenarları paralel olan dörtgenlere yamuk denir.
Şekildeki ABCD yamuğunda [AB] // [DC] dir.
[AB] // [DC] olduğundan
x + y = 180°
a + b = 180°
- Karşılıklı iki kenarı paralel olan dörtgenlerde açıortay verilmiş ise ikizkenar üçgen elde edebileceğimiz gibi, ikizkenarlık verilmiş ise de açıortay elde ederiz.
ABCD yamuğunda paralelkenarlar arasındaki uzaklığa yamuğun yüksekliği denir. Alt tabanı |DC| = a,
üst tabanı |AB| = c
yüksekliği |AH| = h
ABCD yamuğunun alanı
Paralel olmayan kenarları eşit olan yamuklara ikizkenar yamuk denir.
a. İkizkenar yamukta taban ve tepe açıları kendi aralarında eşittir.
m(A) = m(B) = y
m(D) = m(C) = x
b. İkizkenar yamukta köşegen uzunlukları eşittir. Köşegenlerin kesiştiği noktaya E dersek
|AE| = |EB|
|DE| = |CE|
- Köşegen uzunlukları birbirine eşit olan her yamuk ikizkenardır.
|KL| = c
Kenarlarından biri alt ve üst tabana dik olan yamuğa dik yamuk denir.
|AD| = h aynı zamanda yamuğun yüksekliğidir.
a. ABCD yamuğunda E ve F kenarların orta noktaları ise EL doğrusuna orta taban denir.
[AB] // [EF] // [DC]
Yamuğun alanı
- ABCD yamuğunda EF orta taban
6. Yamuğun köşegenlerinin kesim noktasından tabanlara çizilen paralel;
ABCD yamuğunda L köşegenlerin kesim noktasıdır.
[AB] // [MN] // [DC]
Bir ABCD yamuğunun kenar uzunlukları biliniyor ise kenarlardan birine paralel çizilerek bir paralelkenar ve bir üçgen oluşturulur.
ABCD dik yamuğunda
[AC] ^ [BD] BD ye paralel çizildiğinde oluşan dik üçgende
h2=a.c
ABCD yamuğunda
|AD| = |BC|
[AC] ^ [BD]
yamuğun yüksekliği
10. Yamukta Köşegenlerin Ayırdığı Parçaların Alanı Herhangi bir yamukta köşegenler çizildiğinde
[AB] // [DC]
A(ABCD)=A(BCE)=S
Bir yamukta alt ve üst iki köşenin, karşı kenarın orta noktası ile birleştirilmesi sonucu oluşan alan yamuğun
alanının yarısına eşittir.
|BE| = |EC|
A(ABCD) = 2A(ADE)
l [AB] // [EF] // [DC], |AB| = a
|EF| = b
|DC| = c
A(ABFE) = S2
A(EFCD) = S1
Hiç yorum yok:
Yorum Gönder